A marginal model approach for analysis of multi-reader multi-test receiver operating characteristic (ROC) data.
نویسندگان
چکیده
The receiver operating characteristic curve is a popular tool to characterize the capabilities of diagnostic tests with continuous or ordinal responses. One common design for assessing the accuracy of diagnostic tests involves multiple readers and multiple tests, in which all readers read all test results from the same patients. This design is most commonly used in a radiology setting, where the results of diagnostic tests depend on a radiologist's subjective interpretation. The most widely used approach for analyzing data from such a study is the Dorfman-Berbaum-Metz (DBM) method (Dorfman et al., 1992) which utilizes a standard analysis of variance (ANOVA) model for the jackknife pseudovalues of the area under the ROC curves (AUCs). Although the DBM method has performed well in published simulation studies, there is no clear theoretical basis for this approach. In this paper, focusing on continuous outcomes, we investigate its theoretical basis. Our result indicates that the DBM method does not satisfy the regular assumptions for standard ANOVA models, and thus might lead to erroneous inference. We then propose a marginal model approach based on the AUCs which can adjust for covariates as well. Consistent and asymptotically normal estimators are derived for regression coefficients. We compare our approach with the DBM method via simulation and by an application to data from a breast cancer study. The simulation results show that both our method and the DBM method perform well when the accuracy of tests under the study is the same and that our method outperforms the DBM method for inference on individual AUCs when the accuracy of tests is not the same. The marginal model approach can be easily extended to ordinal outcomes.
منابع مشابه
Combining dependent tests to compare the diagnostic accuracies--a non-parametric approach.
In this paper, we propose a non-parametric approach for comparing diagnostic accuracies in multi-reader receiver operating characteristic (ROC) studies. The approach constructs a test from each reader by extending the conventional non-parametric method and then combines all the individual test statistics to draw an overall conclusion on the relative accuracies of different diagnostic tests. The...
متن کاملReceiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
This review provides the basic principle and rational for ROC analysis of rating and continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in particular area under the curve (AUC) has a meaningful interpretation for disease classification from healthy subjects. The methods of estimate of AUC and its testing in single diagnostic test and also comparative studies...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملMulti-Objective Optimisation for Receiver Operating Characteristic Analysis
Receiver operating characteristic (ROC) analysis is now a standard tool for the comparison of binary classifiers and the selection operating parameters when the costs of misclassification are unknown. This chapter outlines the use of evolutionary multi-objective optimisation techniques for ROC analysis, in both its traditional binary classification setting, and in the novel multi-class ROC situ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2005